
On the Study of Hypothetical Health Constructs

Karen Bandeen-Roche Department of Biostatistics Johns Hopkins University

Joint Statistical Meetings Toronto, Ontario August 9, 2004

With thanks to: Luigi Ferrucci, Yi Huang

Introduction Motivation

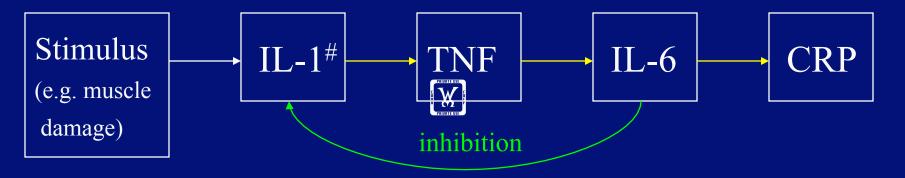
Fried et al., J Gerontol 56:M146-56, 2001

Ultimate Scientific Aims

- Does frailty exist?
 - More than a marker of disease
 - More than severe disability
 - A *syndrome*: more than the component parts
- Improved measurement
 - Beyond current "criterion count" (*Fried et al. 2001*)
 - Product: a summary variable

Statistical Contribution to Achievement of Aims

- Long psychometric tradition
 Validity, (reliability)
- Role of latent variable modeling?
 - Reveal underlying truth?
 - Operationalize theory?
 - Sensitivity analyses?
 - None?
 - -Differential measurement

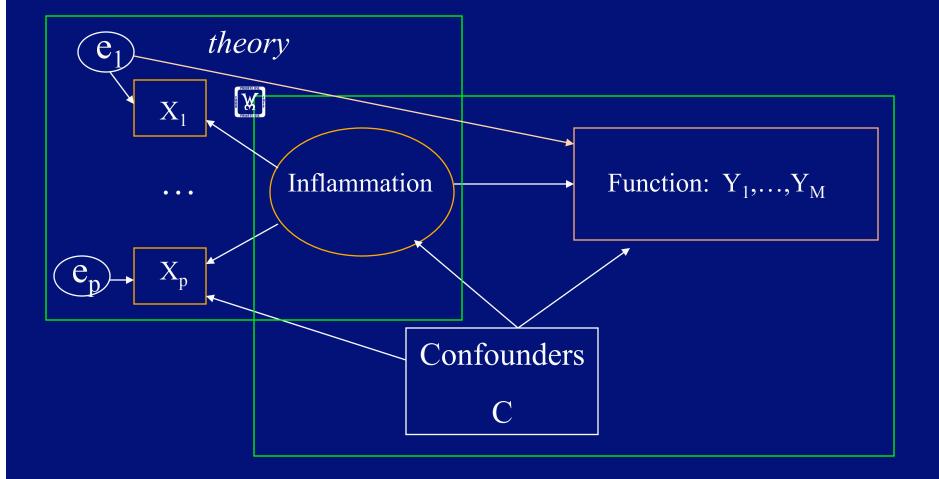

Outline

- Scientific focus: inflammation
 One component of frailty
- Existence / summary: A paradigm
 Subject to theory
- Analysis
 - Data: InCHIANTI

Science: Inflammation

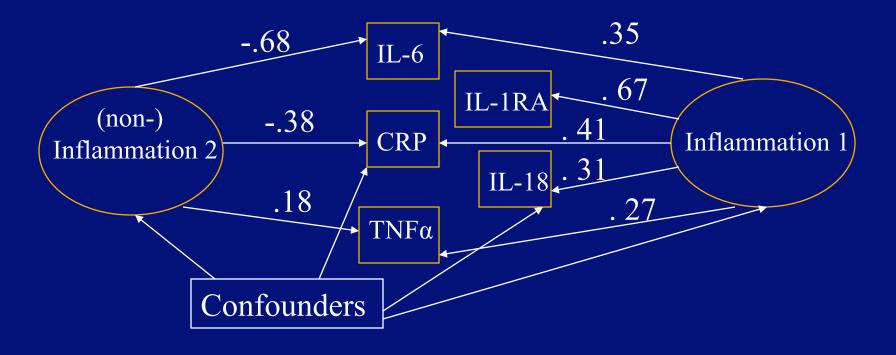
- Central role: cellular repair
- A hypothesis: dysregulation = key in accelerated aging
 - Muscle wasting (*Ferrucci et al., JAGS 50:1947-54; Cappola et al, J Clin Endocrinol Metab 88:2019-25*)
 - Receptor inhibition: erythropoetin production / anemia (*Ershler, JAGS 51:S18-21*)

up-regulation


Difficult to measure. IL-1RA = proxy

Application: Data InCHIANTI (*Ferrucci et al., JAGS, 48:1618-25*)

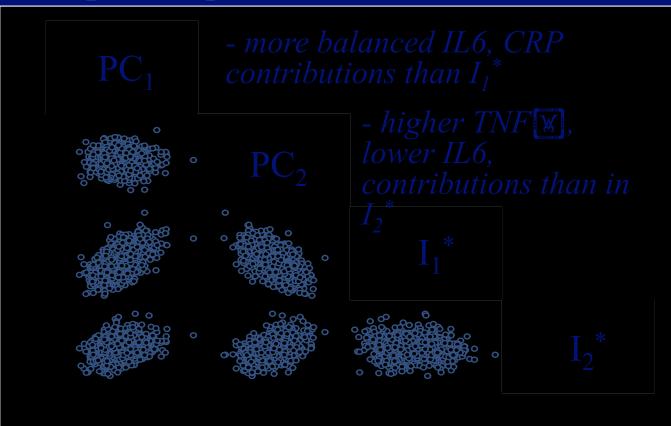
- Inflammation 7 cytokines (5+2)
 IL-6, CRP, TNF-α, IL-1RA, IL-18, (*IL-1β, TGF-β*)
- Functional elements solo; Z-score average Usual & rapid speed; muscle power; range of motion; neurological intactness
- Confounders


Age, gender, (history of: cancer, cardiovascular disease, diabetes, smoking)

Existence / Summary Paradigm

Statistical Methodology Construct Definition

- LV method: measured = physiology + noise
 - Multivariate normal underlying variables, errors
 - Conditional independence of errors



Statistical Methodology Regression of Functioning on Inflammation

- <u>Method 1</u>: Full LV model (a.k.a. two slides ago)
- <u>Method 2</u> (two-stage; empirical):
 - "Inflammation" values via principal components
 - Regression of functioning on "inflammation"
- <u>Method 3</u> (three-stage; compromise):
 - Fit LV measurement model
 - Random generation of "inflammation" from [I^{*}|X,c]
 - Regression of functioning on "inflammation"

Statistical Methodology Method 2: Construct Definition

• Principal components

Statistical Methodology Method 3: Properties (Bandeen-Roche 2003)

- Randomization imposes limiting hierarchical model
- [X|I*,c] arbitrarily well approximates that model
- $[I_i^*|c]$ arbitrarily well approximates $[I_i|c]$

• Implication: Rigorous validation

Findings Mobility association with inflammation

Function	Analytic method								
Measure	Full LV (1)		Empirica	al (2)	Compromise (3)				
	I ₁	I_2	PC_1	PC ₂	I_1^*	I_2^*			
Summary	11	.07	10	01	05	.07			
Motion	15	.03	10	.04	09	.06			
Speed	12	.08	11	02	02	.08			
Strength	04	03	.01	03	<01	<01			
Neuro.	07	.11	30	12	14	.11			
\longrightarrow <u>Note</u> : $R^2 f$ or Methods 2, 3 almost identical									

Cytokine effects Differential Measurement

- Method 1: Within LV model
- Method 2: PCs + residuals of X on PCs
 A mess
- Method 3: $I^* + residuals$ of X on I^*

Cytokine effects Differential Measurement

• Effects & directionality at 🕅 = .05 level:

Function	Cytokine										
Measure	IL-1RA		[L-]	IL-18		TNF \forall		IL-6			
	LV	Ⅰ *	LV	I*	LV	I*	LV	I*	LV	I*	
Summary				-							
Motion		1.			[
Speed		1.				1.		1.			
Strength									[
Neuro.					12.	1.					
			•••	•••	•••	• •					

Discussion

- How to best use the I*s (pseudo-values)?
 - Randomized versus posterior mode?
 - Validation step only?
 - Measurement error correction?
- Why the differences between "full" and "compromise" approaches?
 – Issues related to previous bullet?

Discussion

- Why the differences between "full" and "compromise" approaches?
 - Issues related to previous bullet?
 - Identification issues: "construct" vs. "error"?
 - "Scoring" anomaly (covariate-based imputation)?
- Definitely needed: an empirical summary
- An opportunity for statisticians